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Quantized (1, 0) % (0, 1) Fields

Valeri V. Dvoeglazov1

Received January 7, 1998

We find a mapping between antisymmetric tensor matter fields and the Weinberg
2(2 j 1 1)-component ª bispinorº fields. Equations which describe the j 5 1
antisymmetric tensor field coincide with the Hammer±Tucker equations entirely
and with the Weinberg ones within a subsidiary condition, the Klein±Gordon
equation. A new Lagrangian for the Weinberg theory is proposed which is scalar
and Hermitian. It is built on the basis of the concept of `Weinberg doubles.’ The
origin of a contradiction between the classical theory, the Weinberg theorem
B 2 A 5 l for quantum relativistic fields, and the claimed `longitudity’ of the
antisymmetric tensor field [transformed on the (1, 0) % (0, 1) Lorentz group
representation] after quantization is clarified. Analogs of the j 5 1/2
Feynman±Dyson propagator are presented in the framework of the j 5 1 Weinberg
theory. It is then shown that under a definite choice of field functions and initial
and boundary conditions the massless j 5 1 Weinberg±Tucker±Hammer equations
contain all the information that the Maxwell equations for the electromagnetic field
have. Thus, the former appear to be of use in describing some physical processes.

1. INTRODUCTION

In the 1960s Joos,(1) Weinberg,(2) and Weaver et al.(3) proposed a very

attractive formalism, called the 2(2j 1 1) theory, for describing higher-spin
particles. For instance, as opposed to the Proca 4-vector potentials which

transform according to the (1/2, 1/2) representation of the Lorentz group, in

the j 5 1 case the ª bispinorº functions are constructed via the (1, 0) % (0, 1)

representation which is on an equal footing with the description of Dirac

j 5 1/2 particles. The 2(2j 1 1)-component analogs of the Dirac functions
in the momentum space were earlier defined as

8 s (p) 5
m

! 2 1 D J( a (p)) j s

D J( a 2 1² (p)) j s 2 (1)
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for positive-energy states, and

9 s (p) 5
m

! 2 1 D J( a (p) Q [1/2]) j *s

D J( a 2 1² (p) Q [1/2]) ( 2 1)2J j *s 2 (2)

for negative-energy states (e.g., ref. 4, p. 107). The following notations

are used:

a (p) 5
p0 1 m 1 ( s ? p)

! 2m ( p0 1 m)
, Q [1/2] 5 2 i s 2 (3)

For instance, in the case of spin j 5 1, one has

D 1( a (p)) 5 1 1
(J ? p)

m
1

(J ? p)2

m ( p0 1 m)
(4a)

D 1( a 2 1² (p)) 5 1 2
(J ? p)

m
1

(J ? p)2

m ( p0 1 m)
(4b)

D 1( a (p) Q [1/2]) 5 F 1 1
(J ? p)

m
1

(J ? p)2

m ( p0 1 m) G Q [1] (4c)

D1( a 2 1² (p) Q [1/2]) 5 F 1 2
(J ? p)

m
1

(J ? p)2

m ( p0 1 m) G Q [1] (4d)

Here Q [1/2], Q [1] are the Wigner time-reversal operators for spin 1/2 and 1,

respectively. Their forms depend on the choice of the basis for spin matrices.

For instance in ref. 14 the spin-1 Wigner operator was chosen in the antidiago-

nal form. These definitions lead to a formulation in which the physical content

given by the positive- and negative-energy ª bispinorsº is the same (as in the

papers of Weinberg and in the further consideration of Tucker and Hammer.(5)

In spite of the extensive elaboration of the Weinberg 2(2j 1 1)-component

theory since the sixties (e.g., refs. 6±12) such research has not provided new

significant insights in particle physics.

However, recently, a physically different construct in the (1, 0) % (0, 1)

representation has been proposed. (13) A remarkable feature is that a boson

and its antiboson can possess opposite intrinsic parities: ª purely by accident,

in an attempt to understand an old work of Weinberg(2) and to investigate

the possible kinematical origin for the violation of P, CP, and other discrete

symmetries, (14) a Wigner-type quantum field theory(15) was constructed for a
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spin-one boson.º 2 The definition of the negative-energy solutions in this

construct is similar to the Dirac construct for the spin-1/2 case:

9 s (p) 5 g 58 s (p) 5 ( 2 1)1 2 s S c
[1]8 2 s (p) (5)

with S c
[1] being the charge conjugation matrix in the (1, 0) % (0, 1) representa-

tion.(13a,14) They can be built by means of the same procedure used in equations

(1) and (2), but taking into account the possibility of an additional phase

factor for up (down) components in the bispinorial j 5 1/2 basis (see, e.g.,

refs. 14, 17±19).
On the other hand, interest in antisymmetric tensor fields (e.g., refs.

20±27) has long existed and has grown in connection with recent discoveries

of tensor couplings in the p 2 and K + -meson decays. These fields also should

transform according to the (1, 0) % (0, 1) representation.

In the present paper we give a mapping between antisymmetric tensor

fields and Weinberg j 5 1 ª bispinors,º propose a Lagrangian formalism
for a particular model in the (1, 0) % (0, 1) representation and emphasize

consequences relevant to the present situation in fundamental physics. This

paper comprises ideas presented in refs. 18 and 28±32.

2. MAPPING BETWEEN ANTISYMMETRIC TENSOR AND
WEINBERG FORMULATIONS

Let us begin with the Proca equations for a j 5 1 massive particle,

- m F m n 5 m 2A n (6)

F m n 5 - m A n 2 - n A m (7)

in the form given by refs. 16 and 33. The Euclidean metric, x m 5 (x, x4 5 it),
and the notation - m 5 ( = , 2 i - / - t), - 2

m 5 = 2 2 - 2
t , are used. By means of

the choice of F m n components as the physical variables one can rewrite the

set of equations as

m 2F m n 5 - m - a F a n 2 - n - a F a m (8)

and

- 2
l F m n 5 m 2F m n (9)

2 Some steps in this direction were made in the sixties,(16) but the authors of those papers did
not realize all the possible physical consequences following from their equation.
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It is easy to show that they can be represented in the form (F44 5 0, F4i 5
iEi , and Fjk 5 e jkiBi; p a 5 2 i - a ):

H (m 2 1 p 2
4) E i 1 pi pjEj 1 i e ijk p4 pj Bk 5 0

(m 2 1 p2) Bi 2 pi pjBj 1 i e ijk p4 pjEk 5 0
(10)

or

H [m 2 1 p 2
4 1 p2 2 (J p)2]ij Ej 1 p4 (J p)ij Bj 5 0

[m 2 1 (J p)2] ijBj 1 p4 (J p)ij Ej 5 0
(11)

Adding and subtracting the obtained equations yields

H m 2(E 1 iB)i 1 p a p a Ei 2 (J p)2
ij (E 2 iB)j 1 p4 (Jp)ij (B 1 iE)j 5 0

m 2(E 2 iB)i 1 p a p a Ei 2 (J p)2
ij (E 1 iB)j 1 p4 (J p)ij (B 2 iE)j 5 0

(12)

with (Ji)jk 5 2 i e ijk being the j 5 1 spin matrices. The equations are equivalent

(within a constant factor) to the Hammer±Tucker equation(5) (see also refs.

11 and 7)

( g a b p a p b 1 p a p a 1 2m 2) c 1 5 0 (13)

in the case of the choice x 5 E 1 iB and w 5 E 2 iB, c 1 5 column( x , w ).

Matrices g a b are the covariantly defined matrices of Barut et al.(34) The equa-

tion (13) for massive particles is characterized by positive- and negative-
energy solutions with a physical dispersion Ep 5 6 ! p2 1 m 2; the determi-

nant is equal to

Det [ g a b p a p b 1 p a p a 1 2m 2] 5 2 64m 6( p 2
0 2 p2 2 m 2)3 (14)

but some points concerned with a massless limit should be clarified properly.3

3 Questions of the correct relativistic dispersion relations of different j 5 1 equations (both
massive and massless) and of particle interpretations of these solutions were also discussed
in ref. 35b. For instance, it was shown that the Maxwell equations possess `acausal’ solution
with the energy E 5 0 and the Weinberg equation, which has common solutions with the
Maxwell equations, does not reduce entirely to the set of Maxwell equations in the massless
limit. Weinberg felt some dissatisfaction when discussing this question [see the first line after
(4.21), (4.22) of ref. 2b]; but he failed to indicate in a clear manner that the matrix (J ? p)
has no inverse. Several groups have proposed interpretations of the E 5 0 solution. One
can be connected with the `action-at-a-d istance’ concept. If one accepts this viewpoint, the
electromagnetic field probably has an essentially nonlocal origin and is connected with the
structure of space-time itself. But the question of the possibility of experimental observation
of such `action-at-a-distance’ is obviously nontrivial, even from a conceptual viewpoint. So
this comment is rather speculative.



Quantized (1, 0) % (0, 1) Fields 1919

Following the analysis of ref. 35b, p. 1972,4 and in accordance with the

Dirac technique for obtaining wave equations,(36) one can conclude that other

equations with a physical dispersion can be obtained from

( g a b p a p b 1 ap a p a 1 bm2) c 5 0 (15)

with a and b being some numerical constants. As a result of taking into

account E 2 2 p2 5 m 2, we conclude that an infinite number of equations
with the appropriate dispersion exists provided that b and a are connected

as follows:

b

a 1 1
5 1 or

b

a 2 1
5 1

However, there are only two equations which do not have `acausal’ solutions.

The second one (with a 5 2 1 and b 5 2 2) is5

( g a b p a p b 2 p a p a 2 2m 2) c 2 5 0 (16)

Thus, we have found the `double’ of the Hammer±Tucker equation. In tensor

form it leads to equations which are dual to (10)

H (m 2 1 p2) Ci 2 pi p jC j 2 i e ijkp4p jDk 5 0

(m 2 1 p 2
4) Di 1 pi p jDj 2 i e ijkp4p jCk 5 0

(17)

They can be rewritten in the form [cf. equation (8)]

m 2FÄ m n 5 - m - a FÄ a n 2 - n - a FÄ a m (18)

with FÄ 4i 5 iDi and FÄ jk 5 2 e jkiCi. The vector Ci is an analog of Ei , and Di

is an analog of Bi , because in some cases it is convenient to equate FÄ m n 5
1±2 e m n r s F r s , e 1234 5 2 i. We have used the following properties of the antisym-

metric Levi-Civita tensor:

e ijk e ijl 5 2 d kl, e ijk e ilm 5 ( d jl d km 2 d jm d kl)

e ijke lmn 5 Det 1
d il d im d in

d jl d jm d jn

d kl d km d kn 2
4 I mean that some fraction of the operator d a b p a p b acting on physically permittable states can
be substituted as m 2 % 2 d a b p a p b . The general equation can also be obtained by setting up
the generalized Ryder±Burgard relation.(13,18,19)

5 The determinant of the matrix on the left-hand side of the following equation is also given
by formula (14).
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Comparing the structure of the Weinberg equation (a 5 0, b 5 1) with

the Hammer±Tucker `doubles,’ one can convince oneself that the former can

be represented in a tensor form

m 2F m n 5 - m - a F a n 2 - n - a F a m 1
1

2
(m 2 2 - 2

l )F m n (19)

that corresponds to equation (21). However, as we learnt, it is possible to

build an equation, a `double,’

m 2FÄ m n 5 - m - a FÄ a n 2 - n - a FÄ a m 1
1

2
(m 2 2 - 2

l )FÄ m n (20)

that corresponds to equation (22). The set of Weinberg equations is written

in the form

( g a b p a p b 1 m 2) c 1 5 0 (21)

( g a b p a p b 2 m 2) c 2 5 0 (22)

Thanks to the Klein±Gordon equation (9) these equations are equivalent to
the Proca tensor equations (and to the Hammer±Tucker ones) in the free

case. However, if the interaction is included, one cannot say this. Thus, the

general solution describing the j 5 1 states can be presented as a superposition

C
(1)

5 c1 c
(1)
1 1 c2 c

(1)
2 (23)

where the constants c1 and c2 are to be defined from the boundary, initial,

and normalization conditions. Let me note a surprising fact: while both the
massive Proca equations (or the Hammer±Tucker ones) and the Klein±Gordon

equation do not possess ª nonphysicalº solutions, their sum, (19), (20), or the

Weinberg equations (21), (22), acquire tachyonic solutions. Next, equations

(21) and (22) can recast in another form (index T denotes the transpose matrix):

[ g 44 p 2
4 1 2 g T

4i p4 pi 1 g ij pi pj 2 m 2] c
(2)
1 5 0 (24)

[ g 44 p 2
4 1 2 g T

4i p4pi 1 g ij pi pj 1 m 2] c
(2)
2 5 0 (25)

respectively, if we understand c
(2)
1 , column (Bi 1 iEi , Bi 2 iEi) 5

i g 5 g 44 c
(1)
1 and c

(2)
2 , column (Di 1 iCi , Di 2 iCi) 5 i g 5 g 44 c

(1)
2 . The general

solution is again a linear combination

C
(2)

5 c1 c
(2)
1 1 c2 c

(2)
2 (26)
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From, e.g., equation (21), dividing c
(1)
1 into longitudinal and transverse

parts, one finds the equations

[E 2 2 p2] (E 1 iB)| 2 m 2 (E 2 iB)|

1 [E 2 1 p2 2 2E (Jp)] (E 1 iB) ’ 2 m 2 (E 2 iB) ’ 5 0 (27)

and

[E 2 2 p2] (E 2 iB)| 2 m 2 (E 1 iB)|

1 [E 2 1 p2 1 2E (Jp)] (E 2 iB) ’ 2 m 2 (E 1 iB) ’ 5 0 (28)

One can see that in the classical field theory antisymmetric tensor matter fields

are fields with transverse components in the massless limit. The longitudinal

ª partsº of the above equations do not contain terms (J ? p) provided that the

longitudinal modes are associated with the plane waves, too. This can be

easily seen on choosing the spin basis where (S i)jk 5 2 i e ijk and using the

definition of the longitudinal modes, p 3 (E 6 iB)| [ 0.
In connection with the above discussion, the statements of the ª longitudi-

nal natureº of the antisymmetric tensor field after quantization made by

several authors(22,23,25,28a) are very surprising. For instance, M. Kalb and P.

Ramond claimed explicitly (ref. 23c, p. 2283, third line from below) ª thus,

the massless f m n has one degree of freedom.º If this interpretation is used

when the Kalb±Ramond Lagrangian describes the (1, 0) % (0, 1) field only,
these authors contradict the correspondence principle and the principles of

the relativistic theory. We discuss this question below and in subsequent

publications. At the least they had to explain whether the gauge field associ-

ated with the Kalb±Ramond gauge invariance has physical significance or

not, and what are the transformation laws for the antisymmetric tensor field

of the third rank and for ª potentialsº f m n .
Under the transformations c

(1)
1 ® g 5 c

(1)
2 or c

(2)
1 ® g 5 c

(2)
2 the set of equa-

tions (21) and (22), or (24) and (25), remains invariant. The origin of this

fact is the dual invariance of the set of the Proca equations. In matrix form,

dual transformations correspond to the chiral transformations (for discussion,

see, e.g., ref. 37).

Another equation has been proposed in refs. 16 and 13

( g a b p a p b 1 Ã u,vm
2) c 5 0 (29)

where Ã u,v 5 i ( - / - t)/E, which distinguishes u- (positive-energy) and v-

(negative-energy) solutions. For instance, in ref. 13a, footnote 4, it is

claimed that

c 1
s (x) 5

1

(2 p )3 # d 3p

2 v p

u s ( p) e ipx (30)
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( v p 5 ! m 2 1 p2, p m x m 5 px 2 Et) must be described by equation (21), and

c 2
s (x) 5

1

(2 p )3 # d 3p

2 v p

v s ( p)e 2 ipx (31)

by equation (22). Nevertheless, calculating the determinants (14) of equations

(13) and (16), we see that the first one has the negative-energy solutions and

the second one the positive-energy solutions. The same is true for both
Weinberg equations; they also have these solutions, and below we will give

their explicit forms. The question of the choice of appropriate equations for

different physical systems was discussed in refs. 14, 17, and 18. The answer

depends on desirable particle properties with respect to discrete symmetries.

Let me consider the question of the `double’ solutions on the basis of
spinorial analysis. In ref. 16a, p. 1305 (see also ref. 38, pp. 60±61) relations

between the Weinberg j 5 1 ª bispinorº (indeed, bivector) and symmetric

spinors of 2j rank have been discussed. It was noted that ª The wave function

may be written in terms of two three-component functions c 5 column

( x w ), that, for the continuous group, transform independently each of other

and that are related to two symmetric spinors:

x 1 5 x 1Ç 1Ç , x 2 5 ! 2 x 1Ç 2Ç , x 3 5 x 2Ç 2Ç (32)

w 1 5 w 11, w 2 5 ! 2 w 12, w 3 5 w 22 (33)

when the standard representation for the spin-one matrices, with S3 diagonal

is used.º Under the inversion operation we have the following rules (ref. 38,
p. 59): w a ® x a

Ç , x a
Ç ® w a , w a ® 2 x a Ç , and x a Ç ® 2 w a . Hence, one can

deduce (if one takes x a
Ç
b
Ç 5 x { a

Ç x b
Ç
}, w a b 5 w { a w b })

x 1Ç 1Ç ® w 11, x 2Ç 2Ç ® w 22, x {1Ç 2Ç } ® w {12} (34)

w 11 ® x 1Ç 1Ç , w 22 ® x 2Ç 2Ç , w {12} ® x {1Ç 2Ç } (35)

However, this definition of symmetric spinors of the second rank x and w
is ambiguous. We are also able to define, e.g., x Ä a Ç b

Ç 5 x { a
Ç H b

Ç
} and w Ä a b 5

w { a F b }, where H b
Ç 5 w *b , F b 5 ( x b

Ç

)*. It is straightforward to show that in

the framework of the second definition we have under the space-inversion

operation

x Ä 1Ç 1Ç ® 2 w Ä 11, x Ä 2Ç 2Ç ® 2 w Ä 22, x Ä {1Ç 2Ç } ® 2 w Ä {12} (36)

w Ä 11 ® 2 x Ä 1Ç 1Ç , w Ä 22 ® 2 x Ä 2Ç 2Ç , w Ä {12} ® 2 x Ä {1Ç 2Ç } (37)

The Weinberg ª bispinorº ( x a
Ç
b
Ç w a b ) corresponds to equations (24) and (25),

and ( x Ä a Ç b
Ç w Ä a b ), to equations (21) and (22). Similar conclusions can be achieved

in the case of the parity definition as P 2 5 2 1. Transformation rules are
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then w a ® i x a
Ç , x a

Ç ® i w a , w a ® 2 i x a Ç , and x a Ç ® 2 i w a (ref. 38, p. 59).

Hence, x a
Ç
b
Ç % 2 w a b and x Ä a Ç b

Ç % 2 w Ä a b , but w b
a

% x a
Ç

b and w Ä b
a

% x Ä a
Ç

b
Ç .

In previous formulations of the Weinberg theory the following Lagran-
gian was proposed (8,9,11b,28a,b) :

+W 5 2 - m c g m n - n c 2 m 2 c c (38)

g m n are the Barut±Muzinich±Williams matrices, which are chosen to be Her-

mitian. It is scalar(28a) and Hermitian cf. ref. 86 and it contains only first-

order time derivatives. Again taking the interpretation of the ª 6-spinorº as7

H x 5 E 1 iB

f 5 E 2 iB
(39)

where c 5 column ( x f ) and E and B are real 3-vectors, we can rewrite the

Lagrangian (38) in the following way:

+AT 5 2 ( - m F n a ) ( - m F n a ) 1 2( - m F m a ) ( - n F n a )

1 2( - m F n a ) ( - n F m a ) 1 m 2F m n F m n (40)

In the massless limit this form of the Lagrangian leads to the Euler±

Lagrange equation

(N 2 m 2)F a b 2 2( - b F a m , m 2 - a F b m , m ) 5 0 (41)

where N 5 - n - n . After the application of the generalized Lorentz condition(22)

the massless Lagrangian (40) becomes equivalent to the Lagrangian of a free

massless skew-symmetric field given in ref. 22:

+H 5
1

8
FkFk (42)

with Fk 5 i e kjmnFjm,n. It is rewritten as (m 5 0)

+H 5 2
1

4
( - m F n a ) ( - m F n a ) 1

1

2
( - m F n a ) ( - n F m a )

5
1

4
+AT 2

1

2
( - m F m a ) ( - n F n a ) (43)

6 When the Euclidean metric is used we take - ²
m 5 ( = , 2 - /- x4), provided that - m 5 ( = , - /- x4).

(33)

7 One can also choose

c
(2)

5 1 E 1 iB

2 E 1 iB 2 5 g 5 c

Since c (2) 5 2 c g 5 the dynamical term (38) is not changed. But the sign in the mass term
is inverse.
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which proves the statement made above. After the application of the Fermi

method mutatis mutandis as in ref. 22 (cf. with the quantization procedure

for a 4-vector potential field) one finds that the Lagrangians (38) and (42)
describe massless particles possessing longitudinal physical components only.

Transverse components are removed by means of the ª gaugeº transformation

F m n ® F m n 1 A[ m n ] 5 F m n 1 - n L m 2 - m L n (44)

(or by a transformation similar to the above, but applied to the Weinberg

bivector). This is a contradiction noted in refs. 28a and 28b: the j 5 1

antisymmetric tensor field was believed to possess the longitudinal component

only, and the helicity is therefore equal to l 5 0. Yet they transform according
to the (1, 0) 1 (0, 1) representation of the Lorentz group (like a Helmholtz±

Weinberg bivector). How is the Weinberg theorem (2) for the (A, B) representa-

tion to be treated in this case?8 If we want to have well-defined creation and

annihilation operators the antisymmetric tensor field should have helicities

l 5 6 1.9 Moreover, do the claims of the ª longitudinal natureº of the antisym-

metric tensor field and hence the Weinberg j 5 1 field signify that we must
abandon the correspondence principle? In classical physics we know that an

antisymmetric tensor field has transverse components; see also (27) and (28).10

This contradiction has been analyzed in refs. 29±32, 39, 40 in detail.

The result is that transverse components are always linked with longitudinal

spin components and can be decoupled only in particular cases. Using the
Weinberg formalism, we provide additional support to this conclusion in the

following section.

We conclude this section: both the theory of Ahluwalia et al.(13,14) and

the model based on the use of c 1 and c 2 are connected with the antisymmetric

tensor matter field description. They have to be quantized consistently. Special

attention should be paid to the translational and rotational invariance (in
fact the conservation of energy±momentum and angular momentum), the

interaction representation, causality, locality, and covariance of the theory,

i.e., to all topics which are axioms of the modern quantum field theory.(41,42)

A consistent theory also has to take into account the degeneracy of states:

two dual functions c 1 and c 2 (or F m n and FÄ m n , the `doubles’ ) are considered

to yield the same spectrum.

8 Weinberg theorem : The fields constructed from the massless particle operator a ( p, l ) of
definite helicity transform according to the representation (A, B) such that B 2 A 5 l .

9 Several authors have indicated this from different viewpoints.(20,21,24,13 )

10 Concerning this contradiction, one of the referees commented, ª the contradictions following
equation (44) arise from a confusion regarding the `transverse’ nature of the E and B fields
with respect to the p and at the same time `longitudinal’ nature of helicity for the SAME
E and B configuration.º I agree.
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3. WHAT PARTICLES ARE DESCRIBED BY THE WEINBERG
THEORY?

In the previous section the concept of the Weinberg j 5 1 field as a

system of degenerate states has been proposed. As a matter of fact, a model

with the Weinberg `doubles’ is equivalent to dual electrodynamics with the
antisymmetric tensor field F m n and its dual FÄ m n . Unfortunately, many works

concerned with dual theories(24,37,43,44) did not examine quantization issues

in detail and many specific features have not been taken into account.11

We begin with a Lagrangian which is similar to (38), but includes

additional terms which respond to the Weinberg `double’ 12:

+
(1)

5 2 - m c 1 g m n - n c 1 2 - m c 2 g m n - n c 2 2 m 2 c 1 c 1 1 m 2 c 2 c 2 (45)

The Lagrangian (45) leads to equations (21), (22), which possess solutions

with a ª correctº bradyon physical dispersion and tachyonic solutions as well.

The second equation coincides with the Ahluwalia et al. equation for v spinors

[equation (13), ref. 13a] or with (12) of ref. 16c. If one accepts the concept

of the Weinberg field as a set of degenerate states, one has to allow for
possible transitions c 1 % c 2 (or F m n % FÄ m n ). At first sight, one can propose

the Lagrangian with the following dynamical part:

+(28) 5 2 - m c 1 g m n - n c 2 2 - m c 2 g m n - n c 1 (46)

where c 1 and c 2 are defined by equations (21), (22). But this form appears

not to admit a mass term in the usual manner. From a mathematical viewpoint

one can find a solution: set m 2 to be a pure imaginary quantity (or in the

operator formulation, the anti-Hermitian operator). We touched upon this

case earlier.(30) A more logical approach seems to be to regard all four states
described by (21), (22), (24), (25). The following Lagrangian can be proposed

in this case:

+
(2)

5 2 - m c (1)²
1 g Ä m n - n c

(2)
2 2 - m c (2)²

2 g m n - n c
(1)
1

2 - m c (1)²
2 g Ä m n - n c

(2)
1 2 - m c (2)²

1 g m n - n c
(1)
2

2 m 2 c (2)²
2 c

(1)
1 2 m 2 c (1)²

1 c
(2)
2 1 m 2 c (1)²

2 c
(2)
1 1 m 2 c (2)²

1 c
(1)
2 (47)

Both the Lagrangians (45) and (47) are scalars13 and Hermitian and they

11 Dual formulations of the Dirac field, the (1/2, 0) % (0, 1/2) representation, have also been
considered, e.g., refs. 45±47, 17, 18. The interaction of the Dirac field with the dual fields
F m n and FÄ m n has been considered in ref. 48 (this implies the existence of the anomalous
electric dipole moment of a fermion).

12 Of course, one can use another form with the substitutions c
(1)

1,2 ª c
(2)

2,1 and g m n ª g Ä m n , where
g Ä m n [ g T

m n [ g 44 g m n g 44.
13 It is easy to verify this by taking into account the proposed interpretations of c (k)

i (x) which
are connected with the tensor F m n and its dual. There is also another way, g , the use of
explicit forms of momentum-spac e ª 6-spinorsº ; see below.
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contain only first-order time derivatives. They both lead to similar equations

for c (1,2)
1 (x) and c (1,2)

2 (x), but one should not forget the difference in signs in

mass terms when considering the equations for c (k)
i (x).

At this point I would like to regard the question of solutions in momentum

space. Using the plane-wave expansion14

c (k)
1 (x) 5 o

s # d 3p

(2 p )3

1

m ! 2Ep

3 F 8(k) s
1 ( p)a (k)

s ( p)e ipx 1 9 (k) s
1 ( p)b (k)²

s ( p)e 2 ipx G (48)

c (k)
2 (x) 5 o

s # d 3p

(2 p )3

1

m ! 2Ep

3 F 8(k) s
2 ( p)c (k)

s ( p)e ipx 1 9 (k) s
2 ( p)d (k)²

s ( p)e 2 ipx G (49)

(Ep 5 ! p2 1 m 2), one can see that the momentum-space `double’ equations

F 2 g 44E
2 1 2iE g 4i pi 1 g ij pi pj 1 m 2 G 8 s

1 ( p) 5 0 (or 9 s
1( p)) (50)

F 2 g 44E
2 1 2iE g 4i pi 1 g ij pi pj 2 m 2 G 8 s

2 ( p) 5 0 (or 9 s
2( p)) (51)

are satisfied by ª bispinorsº

8(1) s
1 ( p) 5

m

! 2 1 F 1 1
(Jp)

m
1

(Jp)2

m (E 1 m) G j s

F 1 2
(Jp)

m
1

(Jp)2

m (E 1 m) G j s 2 (52)

14 I stress that my present aim is to keep the mathematical approach as general as possible.
The relevance of different photon spin states to different forms of field operators will be
studied in more detail in forthcoming publications.
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and

8(1) s
2 ( p) 5

m

! 2 1 F 1 1
(Jp)

m
1

(Jp)2

m (E 1 m) G j s

F 2 1 1
(Jp)

m
2

(Jp)2

m (E 1 m) G j s 2 (53)

respectively. The form (52) has been presented by Hammer and Tucker(5)

and Novozhilov (4) (see also ref. 11). The bispinor normalization in the cited

papers is chosen to be unity. However, as mentioned in ref. 13 it is more

convenient to work with bispinors normalized to the mass, e.g., 6 m2j, in

order to make zero-momentum spinors vanish in the massless limit. Here
and below I keep the normalization of bispinors as in ref. 13. Bispinors of

Ahluwalia et al.(13) can be written in the more compact form

u s
AJG( p) 5 1 F m 1

(Jp)2

E 1 m G j s

(Jp) j s 2 , v s
AJG( p) 5 1 0 1

1 0 2 u s
AJG( p) (54)

They coincide with the Hammer±Tucker±Novozhilov bispinors within a nor-

malization and a unitary transformation by the 8 matrix:

u s
[13] (p) 5 m ? U8 s

[5,4]( p) 5
m

! 2 1 1 1

1 2 1 2 8 s
[5,4]( p) (55)

v s
[13]( p) 5 m ? U g 5 8 s

[5,4](p) 5
m

! 2 1 1 1

1 2 1 2 g 5 8 s
[5,4]( p) (56)

But, as we have found, the Weinberg equations (with 1 m 2 and with 2 m 2)

have solutions with both positive and negative energies. In the framework

of this paper one can consider that 9 (1,2)
s ( p) 5 ( 2 1)1 2 s g 5S

c
[1] 8(1,2)

2 s ( p) and,

thus, the explicit form of the negative-energy solutions would be the same

as of the positive-energy solutions in accordance with definitions (1), (2);
see the discussion in Section 1. Thus, in the case of the choice of

8(1) s
1 ( p) and 9 (1) s

2 , g 58
(1) s
1 ( p) as physical bispinors we come to the

Bargmann±Wightman±Wigner-type (BWW) quantum field model proposed

by Ahluwalia et al. Of course, following the same logic, one can choose
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8(1) s
2 and 9 (1) s

1 bispinors and come to yet another version of the BWW

theory. While in this case the parities of a boson and its antiboson are opposite,

we have 2 1 for 8-bispinor and 1 1 for 9-bispinor, i.e., different in sign

from the model of Ahluwalia et al.15 The construct proposed by Weinberg(2)

and developed in this paper is also possible. I do not agree with the claim

of the authors of ref. 13a (footnote 4) that 9 (1) s
1 ( p ) are not solutions of

equation (21). The origin of the possibility that the 8i- and 9i-bispinors in

(50), (51) can coincide is that the Weinberg equations are of second order

in time derivatives. The Bargmann±Wightman±Wigner construct presented

by Ahluwalia et al.(13) is not the only construct in the (1, 0) % (0, 1)

representation and one can start with the earlier definitions of the 2(2j 1
1) bispinors.

Next, in Section 2 we gave two additional equations (24), (25). Their

solutions can also be useful because of the possibility of the use of the

Lagrangian form (47). The solutions in the momentum representation are

written as follows:

8(2) s
1 (p) 5

m

! 2 1 F 1 2
(Jp)

m
1

(Jp)2

m (E 1 m) G j s

F 2 1 2
(Jp)

m
2

(Jp)2

m (E 1 m) G j s 2 (57)

8(2) s
2 ( p ) 5

m

! 2 1 F 1 2
(Jp)

m
1

(Jp)2

m (E 1 m) G j s

F 1 1
(Jp)

m
1

(Jp)2

m (E 1 m) G j s 2 (58)

Therefore, one has 8
(1)
2 ( p ) 5 g 58

(1)
1 ( p) and 8

(1)
2 ( p ) 5 2

8
(1)
1 ( p ) g 5; 8

(2)
1 ( p ) 5 g 5 g 448

(1)
1 ( p ) and 8

(2)
1 (p) 5 8

(1)
1 (p) g 5 g 44; 8

(2)
2 ( p ) 5

g 448
(1)
1 ( p ) and 8

(2)
2 ( p ) 5 8

(1)
1 ( p ) g 44. In fact, they are connected by transfor-

mations of the inversion group.

Let me now repeat the quantization procedure for antisymmetric tensor

field presented, e.g., in ref. 22; however, it will be applied to the

15 At our present level of knowledge this mathematical difference has no physical significance,
because it is believed that ª ONLY relative intrinsic parities of the particles are physically
observable.º But we want to stay in the most general framework and perhaps some forms
of interactions can lead to observed physical differences between these models.
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Weinberg field. Let me trace contributions of +(1) to dynamical invariants.

From the definitions(33)

7 m n 5 2 o
i H - +

- ( - m f i)
- n f i 1 - n f i

- +

- ( - m f i ) J 1 + d m n (59)

P m 5 # 3 m (x) d 3x 5 2 i # 74 m d 3x (60)

one can find the energy-momentum tensor16

7
(1)
m n 5 - a c 1 g a m - n c 1 1 - n c 1 g m a - a c 1

1 - a c 2 g a m - n c 2 1 - n c 2 g m a - a c 2 1 +
(1)

d m n (65)

16 Finding the classical dynamical invariants from the Lagrangian +(2) does not present any
difficulty. They are

7
(2)

m n 5 - a c (1)²
1 g Ä a m - n c

(2)

2 1 - a c (2)²
1 g a m - n c

(1)

2 1 - a c (1)²
2 g Ä a m - n c

(2)

1 1 - a c (2)²
2 g a m - n c

(1)

1

1 - n c (1)²
1 g Ä m a - a c

(2)

2 1 - n c (2)²
1 g m a - a c

(1)

2 1 - n c (1) ²
2 g Ä m a - a c (2)

1 1 - n c (2)²
2 g m a - a c

(1)

1

1 +
(2)

d m n (61)

*
(2)

5 # [ 2 - 4 c (1)²
1 g 44 - 4 c

(2)

2 1 - i c (1)²
1 g ij - j c

(2)

2 2 - 4 c (2) ²
1 g 44 - 4 c

(1)

2 1 - i c (2)²
1 g ij - j c (1)

2

2 - 4 c (1)²
2 g 44 - 4 c

(2)

1 1 - i c (1)²
2 g ij - j c

(2)

1 2 - 4 c (2) ²
2 g 44 - 4 c

(1)

1 1 - i c (2)²
2 g ij - j c

(1)

1

1 m 2 c (1)²
1 c

(2)

2 2 m 2 c (2) ²
1 c

(1)

2 2 m 2 c (1)²
2 c (2)²

1 1 m 2 c (2)²
2 c

(1)

1 ] d 3x (62)

The charge operator and the spin tensor are

7
(2)

m 5 i [ - a c (1)²
1 g Ä a m c (2)

2 1 - a c (2)²
1 g a m c

(1)

2 1 - a c (1)²
2 g Ä a m c

(2)

1 1 - a c (2)²
2 g a m c

(1)

1

2 c (1)²
1 g Ä m a - a c

(2)

2 2 c (2)²
1 g m a - a c

(1)

2 2 c (1)²
2 g Ä m a - a c

(2)

1 2 c (2)²
2 g m a - a c

(1)

1 ] (63)

S
(2)

m n , l 5 i[ - a c (1)²
1 g Ä a l N c

(2)
2

m n c
(2)

2 1 - a c (2)²
1 g a l N

c
(1)
2

m n c
(1)

2 1 - a c (1)²
2 g Ä a l N c

(2)
1

m n c
(2)

1

1 - a c (2)²
2 g a l N

c
(1)
1

m n c
(1)

1 1 c (1)²
1 N c

(1)²
1

m n g Ä l a - a c
(2)

2 1 c (2)²
1 N c

(2)²
1

m n g l a - a c
(1)

2

1 c (1)²
2 N c

(1)²
2

m n g Ä l a - a c (2)
(1) 1 c (2)²

2 N c
(1)²
2

m n g l a - a c (1)
1 ] (64)

Questions of translational invariance, the choice of bispinors corresponding to the physical
states, renormalizabil ity of the theory based on +(2), and the possibility of the existence of
chiral charge for this system [as for the Majorana states in the (1/2, 0) % (0, 1/2) representa-
tion, as shown in previous papers of the author] will be given detailed elaboration in a
separate paper.
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As a result the Hamiltonian is17

*
(1)

5 # [ 2 - 4 c 2 g 44 - 4 c 2 1 - i c 2 g ij - j c 2

2 - 4 c 1 g 44 - 4 c 1 1 - i c 1 g ij - j c 1 1 m 2 c 1 c 1 2 m 2 c 2 c 2] d 3x (66)

The quantized Hamiltonian

*
(1)

5 o
s # d 3p

(2 p )3 Ep [a ²
s ( p) a s ( p) 1 b s ( p) b ²

s ( p)

1 c ²
s ( p) c s ( p) 1 d s ( p) d ²

s ( p)] (67)

is obtained after using the plane-wave expansion following the procedure of,

e.g., refs. 41 and 42. Acknowledging the suggestion of a colleague, I regard

the matters of translational invariance and positive-definiteness of the energy

in the theory based on the +(1) in more detail. I proceed step by step to the

fermionic consideration of ref. 41, p. 145.18 The condition of translational
invariance imposes the constraints

c 1(x 1 a) 5 e 2 iPm a m c 1(x)e iPm a m , c 2(x 1 a) 5 e 2 iPm am c 2(x)e iPm a m

(68)

or, in differential form,

- m c 1(x) 5 2 i [P m , c 1(x)] 2 , - m c 1(x) 5 2 i [P m , c 1(x)] 2 (69)

- m c 2(x) 5 2 i [P m , c 2(x)] 2 , - m c 2(x) 5 2 i [P m , c 2(x)] 2 (70)

These constraints are satisfied provided that

[P m , a s ( p)] 2 5 2 p m a s ( p), [P m , b s ( p)] 2 5 2 p m b s ( p) (71)

[P m , a ²
s ( p)] 2 5 1 p m a ²

s ( p), [P m , b ²
s ( p)] 2 5 1 p m b ²

s ( p) (72)

17 The Hamiltonian can also be obtained from the second-order Lagrangian presented in ref.
13b, equation (18), by means of the procedure developed by Ostrogradsky (49) (see also
Weinberg’ s remark on p. B1325 of ref. 2a). Ostrogradsky’ s procedure seems not to have been
applied in ref. 13 to obtain conjugate momentum operators.

18 In order not to cloud the essence of the question I assume that transitions c 1 % c 2 and
transitions between states of different signs of energy (as in ref. 41) are irrelevant at the
moment. Otherwise, the only correction to be taken into account where necessary is that the
commutators (77), (78) should be generalized. (30)
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Analogous relations exist for the operators c s ( p) and d s ( p). Replacing P m

by its expansion, this is equivalent to

a ²
s (k)[a s (k),a s 8( p)] 2 1 [a ²

s (k),a s 8( p)] 2 a s (k) 5 2 (2 p )3 d (3)( p 2 k)a s 8( p) (73)

b s (k)[b ²
s (k),b s 8( p)] 2 1 [b s (k),b s 8( p)] 2 b ²

s (k) 5 2 (2 p )3 d (3)( p 2 k)b s 8( p) (74)

a ²
s (k)[a s (k),a ²

s 8( p)] 2 1 [a ²
s (k),a ²

s 8( p)] 2 a s (k) 5 (2 p )3 d (3)( p 2 k)a ²
s 8( p) (75)

b s (k) [b ²
s (k),b ²

s 8( p)] 2 1 [b s (k),b ²
s 8( p)] 2 b ²

s (k) 5 (2 p )3 d (3)( p 2 k)b s 8( p) (76)

We can list very similar formulas for the states defined by the field function

c 2(x). Therefore, we deduce the commutation relations

[a s ( p), a ²
s 8(k)] 2 5 [c s ( p), c ²

s 8(k)] 2 5 (2 p )3 d s s 8 d ( p 2 k) (77)

[b s ( p), b ²
s 8(k)] 2 5 [d s ( p), d ²

s 8(k)] 2 5 (2 p )3 d s s 8 d ( p 2 k) (78)

It is easy to see that the Hamiltonian is positive-definite and the translational

invariance remains in the framework of this description (cf. ref. 13). Note
that I did not apply the indefinite metric, which is a rather obscure concept.

Analogously, from the definitions

( m 5 2 i o
i H - +

- ( - m f i)
f i 2 f i

- +

- ( - m f i) J (79)

Q 5 2 i # (4(x) d 3x (80)

and

} m n , l 5 x m 7 l n 2 x n 7 l m

2 i o
i H - +

- ( - l f i)
N f

im n f i 1 f i N
f

im n
- +

- ( - l f i) J (81)

M m n 5 2 i # } m n ,4(x) d 3x (82)

one can find the current operator

(
(1)
m 5 i [ - a c 1 g a m c 1 2 c 1 g m a - a c 1

1 - a c 2 g a m c 2 2 c 2 g m a - a c 2] (83)

and using (81), the spin momentum tensor

S
(1)
m n , l 5 i [ - a c 1 g a l N

c
1m n c 1 1 c 1N

c 1
m n g l a - a c 1

1 - a c 2 g a l N
c 2
m n c 2 1 c 2N

c
2m n g l a - a c 2] (84)
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If the Lorentz group generators (the j 5 1 case) are defined from

L g m n L a m a a n b 5 g a b (85)

L L 5 1 (86)

L 5 g 44 L ² g 44 (87)

then in order to keep the Lorentz covariance of the Weinberg equations and

of the Lagrangian (45), one should use the following generators:

N c 1, c 2( j 5 1)
m n 5 2 N c 1, c 2( j 5 1)

m n 5
1

6
g 5, m n (88)

The matrix g 5, m n 5 i [ g m l , g n l ] 2 is defined to be Hermitian. The choice of

generators for Lorentz transformations has also been regarded in ref. 16. Due

to the fact that the set of Weinberg states is degenerate, one can also consider

the situation when one Weinberg equation [e.g., (21)] transforms into another

[e.g., (24)]. This case corresponds to the possibility of combining pure Lorentz

transformations with transformations of the inversion group; the correspond-
ing rules are different from (85)±(87).

The quantized charge operator and the quantized spin operator follow

immediately from (83) and (84):

Q
(1)

5 o
s # d 3p

(2 p )3 [a ²
s ( p)a s ( p) 2 b s ( p)b ²

s ( p)

1 c ²
s ( p)c s ( p) 2 d s ( p) d ²

s ( p)] (89)

(W
(1)

? n)/m 5 o
s s 8 #

d 3p

(2 p )3

1

m 2Ep

u s
1 (p)(Ep g 44 2 i g 4i pi) I ^ (Jn)u s 8

1 ( p)

3 [a ²
s ( p)a s 8( p) 1 c ²

s ( p)c s 8( p) 2 b s ( p)b ²
s 8( p) 2 d s ( p)d ²

s 8( p)]

(90)

(provided that the frame is chosen in such a way that n | p is along the third
axis). It is easy to verify that the eigenvalues of the charge operator are 6 1,

and of the Pauli-Lyuban’ sky spin operator are

j *s (Jn) j s 8 5 1 1, 0, 2 1 (91)

in the massive case and 6 1 in the massless case.19 Now we can answer why

19 See the discussion of the massless limit of the Weinberg bispinors in refs. 35 and 51. While
in the massless limit W m n m 5 0, this does not signify that W m would always be equal to zero;
in this case we already cannot define a normalized spacelike vector n m whose space part is
parallel to the vector p. It becomes lightlike.
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ª a queer reduction of degrees of freedomº happened in refs. 22, 23, 25. The

origin of this surprising fact follows from Hayashi (ref. 22, p. 498): The

requirement ª that the physical realizable state satisfies a quantal version of
the generalized Lorentz condition,º formulas (18) of ref. 22,20 permits one

to eliminate the upper (or down) part of the Weinberg ª bispinorº and to

remove transverse components of the remaining part by means of the ª gaugeº

transformation (44), which ª ensures the massless skew-symmetric field is
longitudinal .º The reader can be convinced of this ª obvious factº by looking

at the explicit form of the Pauli±Lyuban’ sky operator (90). Taking into account
both positive- and negative-energy solutions (cf. ref. 25) in the Lagrangian

(40) and not applying the generalized Lorentz condition (cf. refs. 22, 23),

we are able to account for both transverse and longitudinal components, i.e.,
to describe a j 5 1 particle. Furthermore, one can say even more simply that

the application of the generalized Lorentz condition may be successful to

the nonzero-energy states of helicities 6 1,21 so in earlier works, as a matter
of fact, the authors implied the existence of such states. On the other hand,

longitudinal components of the Weinberg fields are directly linked with the

mass of a j 5 1 particle,(51) and, possibly, with the concept of the B(3)

Evans±Vigier field.(39) This fact can provide a deeper understanding of rela-

tions between Casimir invariants of a particle field and space-time structures.
The present wisdom does not contradict the Weinberg theorem nor the classi-

cal limit, (27), (28) of the previous section. Thanks to the mapping between

the antisymmetric tensor and Weinberg formulations, the conclusion is valid

for both the Weinberg 2(2 j 1 1)-component ª bispinorº and the antisymmetric

(skew-symmetric) tensor field. Thus, we have now proven that a photon (a

j 5 1 massless particle) can possess spin degrees of freedom, in accordance
with experiment. The contradictory claims about the pure ª longitudinal

natureº of quantized antisymmetric fields which have been made since the

sixties are unreasonable. We can suggest an analogy considering the modified

electrodynamics recently proposed by Evans and Vigier. In fact, the authors

of the earlier ª longitudinalº papers ª align themselvesº with the concept of

the B(3) field (named the Kalb±Ramond field), but, surprisingly, they reject
transverse modes (after quantization)!? By the way, it is obvious from the

20 Read: ª a quantal versionº of the Maxwell equations imposed on the state vectors in the Fock
space. Applying them leads to the case when (90) is equal to zero identically . Nonetheless,
such a procedure should be taken cautiously; see, e.g., ref. 13, Table 2, for a discussion of
the acausal physical dispersion of equations (4.19) and (4.20) of ref. 2b, ª which are just
Maxwell’s free-space equations for left- and right-circularly polarized radiation .º See also
footnote 1 in ref. 28c. The existence of `acausal’ solutions is probably connected with the
indefinite metric problem, with the appearance of ghost states in the gauge models, and with
the concept of `action-at-a-d istance.’ (67)

21 If the energy is equal to zero, then in my opinion there is no sense in speaking about helicity
at all.
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consideration of the similar construct in the (1/2, 0) % (0, 1/2) representation

that on an equal footing those authors could claim that a j 5 1/2 massless

neutrino field would be pure longitudinal, too. Simply speaking, such claims
are absurd.

Finally, for the sake of completeness let me rewrite the Lagrangians

presented above in the 12-component form:

+
(1)

5 2 - m C G m n - n C 2 m 2 C C (92)

where

C 5 1 c 1

c 2 2 , C 5 ( c
²
1 c

²
2) ? 1 g 44 0

0 2 g 44 2 (93)

are the doublet wave functions,

G m n 5 1 g m n 0

0 2 g m n 2 , G 5 5 1 1 0

0 2 1 2 , G 0 5 1 0 1
1 0 2 (94)

The Lagrangian +(2) can be written in a similar fashion:

+
(2)

5 2 - ²
m C (1)² G m n G 5 G 0 - ²

n c
(2)

2 - m C (2)² G m n G 5 G 0 - n C
(1)

2 m 2 C (1)² G 5 G 0 C
(2)

1 m 2 C (2)² G 5 G 0 C
(1)

(95)

One can conclude this section: the generalized Lorentz condition can

be incompatible with the specific properties of the antisymmetric tensor field
deduced from the ordinary approach of classical physics, i.e., its application

can lead (and did lead in earlier papers) to the loss of information about

either transverse or longitudinal modes of the antisymmetric tensor field. The

connection of the present model with the Bargmann±Wightman±Wigner-type

quantum field theories deserves further elaboration. As a matter of fact, the

present model develops Weinberg’ s and Ahluwalia’ s ideas of the Dirac-like
description of bosons on an equal footing with fermions, i.e., on the ground

of the ( j, 0) % (0, j ) representation of the Lorentz group.

4. WEINBERG PROPAGATORS

According to the Feynman±Dyson±Stueckelberg ideas, a causal propaga-

tor has to be constructed by using the formula (e.g., ref. 41, p. 91).

SF(x2, x1) 5 # d 3k

(2 p )3

m

Ek

[ u (t2 2 t1) a u s (k) ^ u s (k)e 2 ikx

1 u (t1 2 t2) b v s (k) ^ v s (k)e ikx] (96)
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(x 5 x2 2 x1). In the j 5 1/2 Dirac theory we obtain

SF(x) 5 # d 4k

(2 p )4 e 2 ikx kÃ1 m

k 2 2 m 2 1 i e
(97)

provided that the constants a and b are determined by imposing

(i - Ã2 2 m)SF(x2, x1) 5 d (4)(x2 2 x1) (98)

namely a 5 2 b 5 1/i.
However, in the framework of the Weinberg theory, (2) which is a general-

ization of the Dirac ideas to higher spins, attempts at constructing a covariant
propagator in such a way have failed. For example, on the p. B1324 of

ref. 2a Weinberg writes: ª Unfortunately, the propagator arising from Wick’ s

theorem is not equal to the covariant propagator except for j 5 0 and j 5
1/2. The trouble is that the derivatives act on the e (x) 5 u (x) 2 u ( 2 x) in

D C(x) as well as on the functions22 D and D 1. This gives rise to extra terms

proportional to equal-time d functions and their derivatives . . . The cure is
well known: . . . compute the vertex factors using only the original covariant

part of [the Hamiltonian] *(x); do not use [the Wick propagator] for internal

lines; instead use the covariant propagator [the formula (5.8) in ref. 2a].º

The propagator recently proposed in refs. 35c and 35d (see also other papers

of the same author) is the causal propagator: ª Only the physically acceptable

causal solutions of the Weinberg equations enter these propagators.º However,
this does not satisfy us fundamentally since the old problem remains: the

Feynman±Dyson propagator is not the Green’ s function of the Weinberg

equation. The covariant propagator presented in ref. 5, while a Green’ s func-

tion of the (1, 0) % (0, 1) equation, would propagate kinematically spurious

solution.(35c) Our aim in the following work is to consider the problem of
constructing propagators in the framework of the model proposed in the

previous sections.

A set of four equations has been proposed in section 2. We consider

the most general case. Let us check if the sum of four equations (x 5 x2 2 x1)

[ g m n - m - n 2 m 2] # d 3p

(2 p )32Ep

[ u (t2 2 t1) a 8 s (1)
1 ( p) ^ 8 s (1)

1 ( p)e ipx

1 u (t1 2 t2) b 9 s (1)
1 ( p) ^ 9 s (1)

1 ( p)e 2 ipx]

1 [ g m n - m - n 1 m 2] # d 3p

(2 p )32Ep

[ u (t2 2 t1) c 8 s (1)
2 ( p) ^ 8 s (1)

2 ( p)e ipx

22 In the cited paper the following notation has been used: D 1(x) [ i [ D +(x) 1 D +( 2 x)], D (x)

[ D +(x) 2 D +( 2 x), and i D +(x) [ (2 p ) 2 3 # (d 3p /2Ep) exp(ipx).
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1 u (t1 2 t2) d 9 s (1)
2 ( p) ^ 9 s (1)

2 ( p)e 2 ipx]

1 [ g Ä m n - m - n 2 m 2] # d 3p

(2 p )32Ep

[ u (t2 2 t1) g 8 s (2)
2 ( p) ^ 8 s (2)

2 ( p)e ipx

1 u (t1 2 t2) h 9 s (2)
2 ( p) ^ 9 s (2)

2 ( p)e 2 ipx] 5 d (4)(x2 2 x1) (99)

can be satisfied by a definite choice of the constants a, b, etc. In the process

of calculation I assume that the set of the analogs of the ª Pauli spinorsº in

the (1, 0) or (0, 1) space is complete and is normalized to d s s 8.

Simple calculations yield

- x2
m - x2

n [a u (t2 2 t1)e
ip(x2 2 x1) 1 b u (t1 2 t2)e

2 ip(x2 2 x1)]

5 2 [ap m p n u (t2 2 t1)exp[ip(x2 2 x1)] 1 bp m p n u (t1 2 t2)exp[ 2 ip(x2 2 x1)]]

1 a [ 2 d m 4 d n 4 d 8(t2 2 t1) 1 i ( p m d n 4 1 p n d m 4) d (t2 2 t1)]exp[ip(x2 2 x1)]

1 b [ d m 4 d n 4 d 8(t2 2 t1) 1 i ( p m d n 4 1 p n d m 4) d (t2 2 t1)]exp[ 2 ip(x2 2 x1)] (100)

and

8
(1)
1 8

(1)
1 5

1

2 1 m 21 Sp ^ Sp

Sp ^ Sp m 21 2 , 8
(1)
2 8

(1)
2 5

1

2 1 2 m 21 Sp ^ Sp

Sp ^ Sp 2 m 21 2 (101)

8
(2)
1 8

(2)
1 5

1

2 1 2 m 21 Sp ^ Sp

Sp ^ Sp 2 m 21 2 , 8
(2)
2 8

(2)
2 5

1

2 1 m 21 Sp ^ Sp

Sp ^ Sp m 21 2 (102)

where

Sp 5 m 1 (Jp) 1
(Jp)2

E 1 m
(103)

Sp 5 m 2 (Jp) 1
(Jp)2

E 1 m
(104)

Due to the fact that

[E 2 (Jp)] Sp ^ Sp 5 m 2 [E 1 (Jp)] (105)

[E 1 (Jp)] Sp ^ Sp 5 m 2 [E 1 (Jp)] (106)

after simplifying the left side of (99) and comparing it with the right side,
we find that the causal propagator is admitted by using the Wick formula

for the time-ordered particle operators, provided that the constants are equal

to 1/4im2. It is necessary to consider all four equations (21), (22), (24),

and (25).
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The j 5 1 analogs of the formula (97) for the Weinberg propagators

follow from the formula (3.6) of ref. 35d immediately:

S
(1)
F ( p) 5 2

1

i (2 p )4( p 2 1 m 2 2 i e )
[ g m n p m p n 2 m 2] (107)

S
(2)
F ( p) 5 2

1

i(2 p )4( p 2 1 m 2 2 i e )
[ g m n p m p n 1 m 2] (108)

S (3)
F ( p) 5 2

1

i(2 p )4 ( p 2 1 m 2 2 i e )
[ g Ä m n p m p n 1 m 2] (109)

S (4)
F ( p) 5 2

1

i(2 p )4 ( p 2 1 m 2 2 i e )
[ g Ä m n p m p n 2 m 2] (110)

The conclusions are that one can construct an analog of the Feynman±

Dyson propagator for the 2(2 j 1 1) model and, hence, a ª localº theory,

provided that the Weinberg states are ª quadrupledº in the j 5 1 case. They
cannot propagate separately from each other (compare with the Dirac j
5 1/2 case).

5. MASSLESS LIMIT: CAN THE SIX-COMPONENT
WEINBERG± TUCKER± HAMMER EQUATIONS
DESCRIBE THE ELECTROMAGNETIC FIELD?

In previous sections the equivalence of the Weinberg±Tucker±Hammer
approach and the Proca approach for describing j 5 1 states has been found.

The 2(2j 1 1)-component wave functions are given by (39) and by the

formulas obtained after applying inversion group operations to (39). The

aim of the present section is to consider the conditions under which the

Weinberg±Tucker±Hammer j 5 1 equations can be transformed to (4.21) and

(4.22) of ref. 2b:

¹ 3 [E 2 iB] 1 i ( - / - t) [E 2 iB] 5 0 [ref. 2b, (4.21)]

¹ 3 [E 1 iB] 2 i ( - / - t) [E 1 iB] 5 0 [ref. 2b, (4.22)]

By using the bivector interpretation of c (in the chiral representation) and

the explicit forms of the Barut±Muzinich±Williams matrices, we are able to
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recast the j 5 1 Tucker±Hammer equation (13), which is free of tachyonic

solutions, or the Proca equation (8) of Section 2, to the form

m 2Ei 5 2
- 2Ei

- t 2 1 e ijk
-

- xj

- Bk

- t
1

-
- xi

- Ej

- xj

(111)

m 2Bi 5 e ijk
-

- xj

- Ek

- t
1

- 2Bi

- x 2
j

2
-

- xi

- Bj

- xj

(112)

The Klein±Gordon equation (the D’ Alembert equation in the massless limit)

1 - 2

- t 2 2
- 2

- x 2
i 2 F m n 5 2 m 2F m n (113)

is implied (c 5 " 5 1). Introducing vector operators, we write equations in

the following form:

-
- t

curl B 1 grad div E 2
- 2E

- t 2 5 m 2E (114)

¹ 2B 2 grad div B 1
-
- t

curl E 5 m 2B (115)

Taking into account the definitions

r e 5 div E , Je 5 curl B 2
- E

- t
(116)

r m 5 div B, Jm 5 2
- B

- t
2 curl E (117)

relations of the vector algebra (X is an arbitrary vector):

curl curl X 5 grad div X 2 ¹ 2X (118)

and the Klein±Gordon equation (113), we obtain two equivalent sets of
equations which complete the Maxwell set. The first is

- Je

- t
1 grad r e 5 m 2E (119)

- Jm

- t
1 grad r m 5 0 (120)

and the second is

curlJm 5 0 (121)

curlJe 5 2 m 2B (122)
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One can obtain the equations in different systems of units after one recalls,

e.g., the relations of the Appendix of ref. 52. Also recall that the Weinberg

set of equations [and, hence, equations (119)±(122)23] can be obtained on
the basis of a very few postulates, in fact, by using the Lorentz transformation

rules for the Weinberg bivector (or for the antisymmetric tensor field) and

the Ryder±Burgard relation.(13,14,17±19)

In the massless case the situation is different. First, the set of equations

(117) with the left side chosen to be zero is ª an identity satisfied by certain

space-time derivatives of F m n . . . , namely,(53±55)

- F m n

- x s 1
- F n s

- x m 1
- F s m

- x n 5 0º (127)

I believe that a similar consideration for the dual field FÄ m n as in refs. 53 and

54 can reveal that the same is true for the first equations (116). So, in the
massless case we come to the problem of the interpretation of the charge

and currents.

Second, in order to satisfy the massless equations (121), (122) one

should assume that the currents are represented in the gradient forms of some

scalar fields x e,m. What physical significance do these chi functions have?
In the massless case the charge densities are [see equations (119), (120)]

r e 5 2
- x e

- t
1 const, r m 5 2

- x m

- t
1 const (128)

which tells us that r e and r m are constants, provided that the primary functions

x e,m are linear functions in time (decreasing or increasing?). It is useful to

compare the resulting equations for r e,m and Je,m and the appearence of the
functions x e,m with the 5-potential formulation of electromagnetic theory(54)

(see also refs. 24, 55±59). I believe this concept can also be useful for

explanation of the E 5 0 solutions in higher-spin equations(60,61,35) which

have been ª baptizedº by Moshinsky and Del Sol(62) as `` `relativistic cock-

roach nest.’ Next, I would like to note the following. We can obtain Maxwell’ s

23 Beginning with the dual massive equations and setting C [ E, D [ B, we obtain

- Je

- t
1 grad r e 5 0 (123)

- Jm

- t
1 grad r m 5 m 2B (124)

and

curl Je 5 0 (125)
curl Jm 5 m 2E (126)

This would signify that the physical content spanned by massive dual fields would be
different. The reader can easily find parity-conjugate d equations from (24) and (25).
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free-space equations for a definite choice of the x e and x m , namely, in the

case that they are constants. In ref. 56 it was mentioned that solutions of

(4.21), (4.22) of ref. 2b satisfy equations of the type (111), (112), ª but not
always vice versa.º Interpretation of this statement and investigations of (13)

with different initial and boundary conditions (or of the functions x ) deserve

further elaboration (both theoretical and experimental).

The question also arises of the transformation of the field function (39)

from one frame to another. I would like to draw attention to the remarkable

fact which follows from a consideration of the problem in the momentum
representation. At first sight, one might conclude that under a transfer from

one frame to another one has to describe the field by the Lorentz-transformed

function c 8 (p) 5 L (p) c (p). However, if we take into account the possibility

of combining the Lorentz, dual (chiral), and parity transformations in the

case of higher spin equations24 and that all the equations for the four functions

(21), (22), (24), and (25) reduce to the equations for E and B, which appear
to be the same in the massless limit, one could come to a different situation.

The four bispinors 8 s (1)
1 (p), 8 s (1)

2 (p), 8 s (2)
1 (p), and 8 s (2)

2 (p) [see (52), (53),

(57), and (58)] form a complete set [as well as the transformed ones L (p)

8 s (k)
i (p)] for each value of s . Namely,

a18
s (1)
1 (p)8 s (1)

1 (p) 1 a28
s (1)
2 (p)8 s (1)

2 (p)

1 a38
s (2)
1 (p)8 s (2)

1 (p) a48
s (2)
2 (p)8 s (2)

2 (p) 5 1 (129)

The constants ai are defined by the choice of the normalization of the bispinors.

In any other frame we are able to obtain the primary wave function by

choosing appropriate coefficients c k
i of the expansion of the wave function

(in fact, using appropriate dual rotations and inversions)

C ( p) 5 o
i,k5 1,2

c k
i 8 (k)

i ( p) (130)

The same statement should be valid for negative-energy solutions, since their

explicit forms coincide with those of positive-energy bispinors in the case
of the Hammer±Tucker formulation for a j 5 1 boson. (5) Using the plane-

wave expansion, one can prove this conclusion in the coordinate representa-

tion. Thus, the question of what we observe in experiment would be solved

depending on the fixing of the relative phase factor between left and right

parts of the field function (indeed, between E and B) by the appropriate

physical conditions in which we are interested.
Finally, I note that the massless case reveals a very strange thing.25 The

massless equations (121), (122) written in the integral form lead to the

24 This possibility was discovered earlier and investigated in ref. 13.
25 I am grateful to Dr. A. E. Chubykalo for pointing out this fact and for discussions.
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conclusion that r Je,m ? d l 5 0. This is obviously unacceptable from the

viewpoint of experiment. Thus, we have to conclude that either the j 5 1

field cannot be massless or there exist hidden parameters on which all field

functions (and, probably, space-time characteristics) depend.

Finally, let me mention that in the nonrelativistic limit c ® ` one obtains

the dual Levi-Leblond ª Galilean electrodynamics.º (63,64)

The main conclusion of the paper is as follows26: The Weinberg±Tucker±

Hammer massless equations (or the Proca equations for F m n ) [see also (111)

and (112)] are equivalent to the Maxwell equations for a definite choice of

initial and boundary conditions, which proves their consistency. Their mass-

less limit was shown in ref. 35 to be free of kinematic acausalities, as opposed

to (4.21) and (4.22) of ref. 2b. The Weinberg±Tucker±Hammer approach

permits us to clarify the question of the claimed `longitudinal nature’ of the

antisymmetric tensor field. It is free of the problem of the indefinite metric

in the Fock space. The j 5 1 bosons are considered in a very similar fashion

to fermions in the Dirac approach. This provides a convenient mathematical

formalism for discussing properties of the j 5 1 bosons with respect to

discrete symmetry operations. Therefore, we have to agree with Weinberg,

who wrote in connection with equations (4.21) and (4.22), ª The fact that

these field equations are of first order for any spin seems to me to be of no

great significanceº (ref. 2b, p. B888). In the meantime, I would not like to

denigrate theories based on the use of the vector potentials, i.e., of the

D (1/2, 1/2) representation of the Lorentz group. While the description of the

j 5 1 massless field using this representation contradicts the Weinberg theorem

B 2 A 5 l , which signifies that we do not have well-defined creation and

annihilation operators in the beginning of a quantization procedure, one

cannot forget the significant achievements of these theories. The formalism

proposed here could be helpful only if we need to go beyond the framework

of the Standard Model, i.e., if we find reliable experimental results which

cannot have a satisfactory explanation on the basis of the concept of a minimal

coupling introduced in the conventional manner (see, e.g., ref. 14 for a

discussion of the neutrino model, which forbids such a form of the interaction).

Many questions related to the problem of longitudinal modes of the

j 5 1 field, their relations with tachyonic models (particularly with the concept

of action at a distance and Recami’s extended relativity), with the problem

of the interpretations of mass and spin, and with the problem of gauge degrees

of freedom remain for future research.

26 This conclusion also follows from the results of refs. 13, 35, 28±32, 39, and 40 and ref. 2b
provided that the fact that (Jp) has no inverse matrix has been taken into account.
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